INTRODUCTION AUX PROBABILITÉS Série 8

Exercice 1. [Variables aléatoires et leurs lois] Montrer que pour toute loi de probabilité \mathbb{P} sur $(\mathbb{R}, \mathcal{F}_B)$, il est possible de définir une variable aléatoire dont la loi est décrite par \mathbb{P} .

Exercice 2. [Variables aléatoires de Poisson] Soient $X_1 \sim Poi(\lambda_1)$ et $X_2 \sim Poi(\lambda_2)$ deux variables aléatoires indépendantes définies sur le même espace de probabilité.

- Démontrer que $X_1 + X_2$ est également une variable aléatoire de Poisson avec paramètre $\lambda_1 + \lambda_2$.
- Soient maintenant Y_1, Y_2, \ldots des variables aléatoires indépendantes de loi Ber(p) définies sur le même espace de probabilité. Montrer que $X := \sum_{i=1}^{X_1} Y_i$ est une variable aléatoire et qu'elle suit également la loi $Poi(p\lambda)$. Montrer que de plus $X_1 X$ suit la loi $Poi((1-p)\lambda)$ et est indépendante de X.

Exercice 3. Existe-t-il une variable aléatoire X prenant des valeurs dans \mathbb{N} et telle que si X_1, X_2 sont des copies indépendantes ayant la loi de X, alors $X_1 + X_2$ ait la loi de X?

Exercice 4. [Entropie I] Soient X, Y deux variables aléatoires discrètes indépendantes avec supports S, T. Alors le couple (X, Y) prend des valeurs dans $S \times T$. Montrer que H((X, Y)) = H(X) + H(Y) où H désigne l'entropie de Shannon (cf. Definition 3.13 dans les notes de cours).

Exercice 5. [Entropie II] Soient X, Y deux variables aléatoires discrètes indépendantes de supports respectifs S et T. Montrer que $H(X+Y) \ge H(X)$. Quand l'égalité est-elle atteinte?

Exercice 6. [Loi géometrique comme loi d'entropie maximale] Considérons une variable aléatoire X prenant des valeurs dans \mathbb{N} et telle que $\sum_{i>1} i \mathbb{P}(X=i) = C$ avec C>0 fixé.

Montrer que $H(X) \leq H(G)$ où G suit la loi géométrique $Geo(p_C)$, où p_C est tel que la contrainte ci-dessus soit respectée. Montrer que l'égalité est satisfaite si et seulement si X suit la même loi géométrique.

$0.1 \star \text{Pour le plaisir (non-examinable)} \star$

Exercice 7. Le modèle d'Ising est un modèle bien connu en physique statistique. Pour tout graphe G = (V, E), il peut être défini comme une mesure de probabilité sur les configurations de spins $\sigma : V \to \{-1, +1\}$ où les probabilités sont données par

$$\mathbb{P}(\{\sigma\}) := \frac{1}{Z} \exp\left(\sum_{\{i,j\}\in E} J_{i,j}\sigma_i\sigma_j\right),\,$$

où $J_{i,j}$ sont des paramètres réels et la somme est prise sur les arêtes non orientées.

Pour un modèle d'Ising donné, nous notons pour tous $i, j \in V$

$$c(i,j) = \frac{1}{Z} \sum_{\sigma} \sigma(i) \sigma(j) \mathbb{P}(\{\sigma\}).$$

Démontrez que le modèle d'Ising est la distribution d'entropie maximale parmi toutes les mesures de probabilité \mathbb{Q} sur les configurations $\tilde{\sigma}: V \to \{-1, +1\}$, sous la contrainte que

$$\frac{1}{Z} \sum_{\widetilde{\sigma}} \widetilde{\sigma}(i) \widetilde{\sigma}(j) \mathbb{Q}(\{\sigma\}) = c(i, j).$$